Image-quality assessment is the process of evaluating the quality of an image based on perceptual or objective metrics.
Generative text-to-image models are advancing at an unprecedented pace, continuously shifting the perceptual quality ceiling and rendering previously collected labels unreliable for newer generations. To address this, we present ELIQ, a Label-free Framework for Quality Assessment of Evolving AI-generated Images. Specifically, ELIQ focuses on visual quality and prompt-image alignment, automatically constructs positive and aspect-specific negative pairs to cover both conventional distortions and AIGC-specific distortion modes, enabling transferable supervision without human annotations. Building on these pairs, ELIQ adapts a pre-trained multimodal model into a quality-aware critic via instruction tuning and predicts two-dimensional quality using lightweight gated fusion and a Quality Query Transformer. Experiments across multiple benchmarks demonstrate that ELIQ consistently outperforms existing label-free methods, generalizes from AI-generated content (AIGC) to user-generated content (UGC) scenarios without modification, and paves the way for scalable and label-free quality assessment under continuously evolving generative models. The code will be released upon publication.
Optical coherence tomography (OCT) has revolutionized retinal disease diagnosis with its high-resolution and three-dimensional imaging nature, yet its full diagnostic automation in clinical practices remains constrained by multi-stage workflows and conventional single-slice single-task AI models. We present Full-process OCT-based Clinical Utility System (FOCUS), a foundation model-driven framework enabling end-to-end automation of 3D OCT retinal disease diagnosis. FOCUS sequentially performs image quality assessment with EfficientNetV2-S, followed by abnormality detection and multi-disease classification using a fine-tuned Vision Foundation Model. Crucially, FOCUS leverages a unified adaptive aggregation method to intelligently integrate 2D slices-level predictions into comprehensive 3D patient-level diagnosis. Trained and tested on 3,300 patients (40,672 slices), and externally validated on 1,345 patients (18,498 slices) across four different-tier centers and diverse OCT devices, FOCUS achieved high F1 scores for quality assessment (99.01%), abnormally detection (97.46%), and patient-level diagnosis (94.39%). Real-world validation across centers also showed stable performance (F1: 90.22%-95.24%). In human-machine comparisons, FOCUS matched expert performance in abnormality detection (F1: 95.47% vs 90.91%) and multi-disease diagnosis (F1: 93.49% vs 91.35%), while demonstrating better efficiency. FOCUS automates the image-to-diagnosis pipeline, representing a critical advance towards unmanned ophthalmology with a validated blueprint for autonomous screening to enhance population scale retinal care accessibility and efficiency.
Generative Adversarial Networks (GANs) have made significant progress in enhancing the quality of image synthesis. Recent methods frequently leverage pretrained networks to calculate perceptual losses or utilize pretrained feature spaces. In this paper, we extend the capabilities of pretrained networks by incorporating innovative self-supervised learning techniques and enforcing consistency between discriminators during GAN training. Our proposed method, named HP-GAN, effectively exploits neural network priors through two primary strategies: FakeTwins and discriminator consistency. FakeTwins leverages pretrained networks as encoders to compute a self-supervised loss and applies this through the generated images to train the generator, thereby enabling the generation of more diverse and high quality images. Additionally, we introduce a consistency mechanism between discriminators that evaluate feature maps extracted from Convolutional Neural Network (CNN) and Vision Transformer (ViT) feature networks. Discriminator consistency promotes coherent learning among discriminators and enhances training robustness by aligning their assessments of image quality. Our extensive evaluation across seventeen datasets-including scenarios with large, small, and limited data, and covering a variety of image domains-demonstrates that HP-GAN consistently outperforms current state-of-the-art methods in terms of Fréchet Inception Distance (FID), achieving significant improvements in image diversity and quality. Code is available at: https://github.com/higun2/HP-GAN.
Autonomous inspection of underground infrastructure, such as sewer and culvert systems, is critical to public safety and urban sustainability. Although robotic platforms equipped with visual sensors can efficiently detect structural deficiencies, the automated generation of human-readable summaries from these detections remains a significant challenge, especially on resource-constrained edge devices. This paper presents a novel two-stage pipeline for end-to-end summarization of underground deficiencies, combining our lightweight RAPID-SCAN segmentation model with a fine-tuned Vision-Language Model (VLM) deployed on an edge computing platform. The first stage employs RAPID-SCAN (Resource-Aware Pipeline Inspection and Defect Segmentation using Compact Adaptive Network), achieving 0.834 F1-score with only 0.64M parameters for efficient defect segmentation. The second stage utilizes a fine-tuned Phi-3.5 VLM that generates concise, domain-specific summaries in natural language from the segmentation outputs. We introduce a curated dataset of inspection images with manually verified descriptions for VLM fine-tuning and evaluation. To enable real-time performance, we employ post-training quantization with hardware-specific optimization, achieving significant reductions in model size and inference latency without compromising summarization quality. We deploy and evaluate our complete pipeline on a mobile robotic platform, demonstrating its effectiveness in real-world inspection scenarios. Our results show the potential of edge-deployable integrated AI systems to bridge the gap between automated defect detection and actionable insights for infrastructure maintenance, paving the way for more scalable and autonomous inspection solutions.
Recent generative models have achieved remarkable progress in image editing. However, existing systems and benchmarks remain largely text-guided. In contrast, human communication is inherently multimodal, where visual instructions such as sketches efficiently convey spatial and structural intent. To address this gap, we introduce VIBE, the Visual Instruction Benchmark for Image Editing with a three-level interaction hierarchy that captures deictic grounding, morphological manipulation, and causal reasoning. Across these levels, we curate high-quality and diverse test cases that reflect progressively increasing complexity in visual instruction following. We further propose a robust LMM-as-a-judge evaluation framework with task-specific metrics to enable scalable and fine-grained assessment. Through a comprehensive evaluation of 17 representative open-source and proprietary image editing models, we find that proprietary models exhibit early-stage visual instruction-following capabilities and consistently outperform open-source models. However, performance degrades markedly with increasing task difficulty even for the strongest systems, highlighting promising directions for future research.
Bandit algorithms have recently emerged as a powerful tool for evaluating machine learning models, including generative image models and large language models, by efficiently identifying top-performing candidates without exhaustive comparisons. These methods typically rely on a reward model, often distributed with public weights on platforms such as Hugging Face, to provide feedback to the bandit. While online evaluation is expensive and requires repeated trials, offline evaluation with logged data has become an attractive alternative. However, the adversarial robustness of offline bandit evaluation remains largely unexplored, particularly when an attacker perturbs the reward model (rather than the training data) prior to bandit training. In this work, we fill this gap by investigating, both theoretically and empirically, the vulnerability of offline bandit training to adversarial manipulations of the reward model. We introduce a novel threat model in which an attacker exploits offline data in high-dimensional settings to hijack the bandit's behavior. Starting with linear reward functions and extending to nonlinear models such as ReLU neural networks, we study attacks on two Hugging Face evaluators used for generative model assessment: one measuring aesthetic quality and the other assessing compositional alignment. Our results show that even small, imperceptible perturbations to the reward model's weights can drastically alter the bandit's behavior. From a theoretical perspective, we prove a striking high-dimensional effect: as input dimensionality increases, the perturbation norm required for a successful attack decreases, making modern applications such as image evaluation especially vulnerable. Extensive experiments confirm that naive random perturbations are ineffective, whereas carefully targeted perturbations achieve near-perfect attack success rates ...
Image Quality Assessment (IQA) predicts perceptual quality scores consistent with human judgments. Recent RL-based IQA methods built on MLLMs focus on generating visual quality descriptions and scores, ignoring two key reliability limitations: (i) although the model's prediction stability varies significantly across training samples, existing GRPO-based methods apply uniform advantage weighting, thereby amplifying noisy signals from unstable samples in gradient updates; (ii) most works emphasize text-grounded reasoning over images while overlooking the model's visual perception ability of image content. In this paper, we propose Q-Hawkeye, an RL-based reliable visual policy optimization framework that redesigns the learning signal through unified Uncertainty-Aware Dynamic Optimization and Perception-Aware Optimization. Q-Hawkeye estimates predictive uncertainty using the variance of predicted scores across multiple rollouts and leverages this uncertainty to reweight each sample's update strength, stabilizing policy optimization. To strengthen perceptual reliability, we construct paired inputs of degraded images and their original images and introduce an Implicit Perception Loss that constrains the model to ground its quality judgments in genuine visual evidence. Extensive experiments demonstrate that Q-Hawkeye outperforms state-of-the-art methods and generalizes better across multiple datasets. The code and models will be made available.
Recent advancements in multimodal reward models (RMs) have significantly propelled the development of visual generation. Existing frameworks typically adopt Bradley-Terry-style preference modeling or leverage generative VLMs as judges, and subsequently optimize visual generation models via reinforcement learning. However, current RMs suffer from inherent limitations: they often follow a one-size-fits-all paradigm that assumes a monolithic preference distribution or relies on fixed evaluation rubrics. As a result, they are insensitive to content-specific visual cues, leading to systematic misalignment with subjective and context-dependent human preferences. To this end, inspired by human assessment, we propose UnifiedReward-Flex, a unified personalized reward model for vision generation that couples reward modeling with flexible and context-adaptive reasoning. Specifically, given a prompt and the generated visual content, it first interprets the semantic intent and grounds on visual evidence, then dynamically constructs a hierarchical assessment by instantiating fine-grained criteria under both predefined and self-generated high-level dimensions. Our training pipeline follows a two-stage process: (1) we first distill structured, high-quality reasoning traces from advanced closed-source VLMs to bootstrap SFT, equipping the model with flexible and context-adaptive reasoning behaviors; (2) we then perform direct preference optimization (DPO) on carefully curated preference pairs to further strengthen reasoning fidelity and discriminative alignment. To validate the effectiveness, we integrate UnifiedReward-Flex into the GRPO framework for image and video synthesis, and extensive results demonstrate its superiority.
Segmentation of microscopy images constitutes an ill-posed inverse problem due to measurement noise, weak object boundaries, and limited labeled data. Although deep neural networks provide flexible nonparametric estimators, unconstrained empirical risk minimization often leads to unstable solutions and poor generalization. In this work, image segmentation is formulated as a PDE-constrained optimization problem that integrates physically motivated priors into deep learning models through variational regularization. The proposed framework minimizes a composite objective function consisting of a data fidelity term and penalty terms derived from reaction-diffusion equations and phase-field interface energies, all implemented as differentiable residual losses. Experiments are conducted on the LIVECell dataset, a high-quality, manually annotated collection of phase-contrast microscopy images. Training is performed on two cell types, while evaluation is carried out on a distinct, unseen cell type to assess generalization. A UNet architecture is used as the unconstrained baseline model. Experimental results demonstrate consistent improvements in segmentation accuracy and boundary fidelity compared to unconstrained deep learning baselines. Moreover, the PDE-regularized models exhibit enhanced stability and improved generalization in low-sample regimes, highlighting the advantages of incorporating structured priors. The proposed approach illustrates how PDE-constrained optimization can strengthen data-driven learning frameworks, providing a principled bridge between variational methods, statistical learning, and scientific machine learning.
The rapid advancement of generative artificial intelligence has enabled models capable of producing complex textual and visual outputs; however, their decision-making processes remain largely opaque, limiting trust and accountability in high-stakes applications. This thesis introduces gSMILE, a unified framework for the explainability of generative models, extending the Statistical Model-agnostic Interpretability with Local Explanations (SMILE) method to generative settings. gSMILE employs controlled perturbations of textual input, Wasserstein distance metrics, and weighted surrogate modelling to quantify and visualise how specific components of a prompt or instruction influence model outputs. Applied to Large Language Models (LLMs), gSMILE provides fine-grained token-level attribution and generates intuitive heatmaps that highlight influential tokens and reasoning pathways. In instruction-based image editing models, the exact text-perturbation mechanism is employed, allowing for the analysis of how modifications to an editing instruction impact the resulting image. Combined with a scenario-based evaluation strategy grounded in the Operational Design Domain (ODD) framework, gSMILE allows systematic assessment of model behaviour across diverse semantic and environmental conditions. To evaluate explanation quality, we define rigorous attribution metrics, including stability, fidelity, accuracy, consistency, and faithfulness, and apply them across multiple generative architectures. Extensive experiments demonstrate that gSMILE produces robust, human-aligned attributions and generalises effectively across state-of-the-art generative models. These findings highlight the potential of gSMILE to advance transparent, reliable, and responsible deployment of generative AI technologies.